Перевод: с английского на все языки

со всех языков на английский

alternating-current telegraphy

  • 1 alternating-current telegraphy

    Универсальный англо-русский словарь > alternating-current telegraphy

  • 2 alternating-current telegraphy

    English-Russian electronics dictionary > alternating-current telegraphy

  • 3 alternating-current telegraphy

    English-Russian dictionary of electronics > alternating-current telegraphy

  • 4 telegraphy

    English-Russian electronics dictionary > telegraphy

  • 5 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 6 Duddell, William du Bois

    SUBJECT AREA: Electricity
    [br]
    b. 1872 Kensington, London, England
    d. 4 November 1917 London, England
    [br]
    English engineer, inventor of the first practical oscillograph.
    [br]
    After an education at the College of Stanislas, Cannes, Duddell served an apprenticeship with Davy Paxman of Colchester. Studying under Ayrton and Mather at the Central Technical College in South Kensington, he found the facilities for experimental work of exceptional value to him and remained there for some years. In 1897 Duddell produced a galvanometer which was sufficiently responsive to display an alternating-current wave-form. This instrument, with a coil carrying a mirror in the air gap of a powerful electromagnet, had a small periodic time. An oscillating mirror driven by a synchronous motor spread out the deflection on a time-scale. This development became the first commercial oscillograph and brought Duddell into prominence as a first-rate designer of special instruments. The Duddell oscillograph remained in use until after the Second World War, examples being used for recording short-circuit tests on high-power switchgear and other rapidly varying or transient phenomena. His next important work was to collaborate with Professor Marchant at Liverpool University to investigate the characteristics of the electric arc. This led to the suggestion that, coupled to a resonant circuit, the electric arc could form a generator of high-frequency currents. This arrangement was later developed by Poulson for wireless telegraphy. Duddell spent the last years of his life on government research as a member of the Admiralty Board of Inventions and Research and also of the Inventions Board of the Ministry of Munitions.
    [br]
    Principal Honours and Distinctions
    CBE 1916. FRS 1907. Royal Society Hughes Medal 1912. President, Institution of Electrical Engineers 1912 and 1913.
    Bibliography
    1897, Electrician, 39:636–8 (describes his oscillograph). 5 March 1898, British patent no. 5,449 (the oscillograph).
    1899, with E.W.Marchant, "Experiments on alternate current arcs by aid of oscillograph", Journal of the Institution of Electrical Engineers 28: 1–107.
    Further Reading
    V.J.Phillips, 1987, Waveforms, Bristol (a comprehensive account).
    1945, "50 years of scientific instrument manufacture", Engineering, 159:461.
    GW

    Biographical history of technology > Duddell, William du Bois

  • 7 Thomson, Sir William, Lord Kelvin

    [br]
    b. 26 June 1824 Belfast, Ireland (now Northern Ireland)
    d. 17 December 1907 Largs, Scotland
    [br]
    Irish physicist and inventor who contributed to submarine telegraphy and instrumentation.
    [br]
    After education at Glasgow University and Peterhouse, Cambridge, a period of study in France gave Thomson an interest in experimental work and instrumentation. He became Professor of Natural Philosophy at Glasgow in 1846 and retained the position for the rest of his career, establishing the first teaching laboratory in Britain.
    Among his many contributions to science and engineering was his concept, introduced in 1848, of an "absolute" zero of temperature. Following on from the work of Joule, his investigations into the nature of heat led to the first successful liquefaction of gases such as hydrogen and helium, and later to the science of low-temperature physics.
    Cable telegraphy gave an impetus to the scientific measurement of electrical quantities, and for many years Thomson was a member of the British Association Committee formed in 1861 to consider electrical standards and to develop units; these are still in use. Thomson first became Scientific Adviser to the Atlantic Telegraph Company in 1857, sailing on the Agamemnon and Great Eastern during the cable-laying expeditions. He invented a mirror galvanometer and more importantly the siphon recorder, which, used as a very sensitive telegraph receiver, provided a permanent record of signals. He also laid down the design parameters of long submarine cables and discovered that the conductivity of copper was greatly affected by its purity. A major part of the success of the Atlantic cable in 1866 was due to Thomson, who received a knighthood for his contribution.
    Other instruments he designed included a quadrant electrostatic voltmeter to measure high voltages, and his "multi-cellular" instrument for low voltages. They could be used on alternating or direct current and were free from temperature errors. His balances for precision current measurement were widely used in standardizing laboratories.
    Thomson was a prolific writer of scientific papers on subjects across the whole spectrum of physics; between 1855 and 1866 he published some 110 papers, with a total during his life of over 600. In 1892 he was raised to the peerage as Baron Kelvin of Largs. By the time of his death he was looked upon as the "father" of British physics, but despite his outstanding achievements his later years were spent resisting change and progress.
    [br]
    Principal Honours and Distinctions
    Knighted 1866. Created Lord Kelvin of Largs 1892. FRS 1851. President, Royal Society 1890–4. An original member of the Order of Merit 1902. President, Society of Telegraph Engineers 1874. President, Institution of Electrical Engineers 1889 and 1907. Royal Society Royal Medal 1856, Copley Medal 1883.
    Bibliography
    1872, Reprints of Papers on Electrostatics and Magnetism, London; 1911, Mathematical and Physical Papers, 6 vols, Cambridge (collections of Thomson's papers).
    Further Reading
    Silvanus P.Thompson, 1910, The Life of William Thomson, Baron Kelvin of Largs, 2 vols, London (an uncritical biography).
    D.B.Wilson, 1987, Kelvin and Stokes: A Comparative Study in Victorian Physics, Bristol (provides a present-day commentary on all aspects of Thomson's work).
    J.G.Crowther, 1962, British Scientists of the 19th Century, London, pp. 199–257 (a short critical biography).
    GW

    Biographical history of technology > Thomson, Sir William, Lord Kelvin

См. также в других словарях:

  • Wireless telegraphy — The term Wireless Telegraphy is a historic term used today as applied to early radio telegraph communications techniques and practices. Wireless telegraphy originated as a term to describe electrical signaling without the electric wires to… …   Wikipedia

  • Invention of radio — Great Radio Controversy redirects here. For the album by the band Tesla, see The Great Radio Controversy. Contents 1 Physics of wireless signalling 2 Theory of electromagnetism …   Wikipedia

  • Wireless energy transfer — or wireless power is the transmission of electrical energy from a power source to an electrical load without artificial interconnecting conductors. Wireless transmission is useful in cases where interconnecting wires are inconvenient, hazardous,… …   Wikipedia

  • History of electromagnetism — The history of electromagnetism, that is the human understanding and recorded use of electromagnetic forces, dates back over two thousand years ago, see Timeline of electromagnetism. The ancients must have been acquainted with the effects of… …   Wikipedia

  • Nikola Tesla — Tesla, aged 37, 1893, photo by Sar …   Wikipedia

  • List of Edison patents — Below is a list of Edison patents. Thomas Edison was an inventor who, it is said, accumulated 1500 plus patents worldwide for his inventions. Nearly 1100 of Edison s patents were in the United States, but other patents were approved in countries… …   Wikipedia

  • Wardenclyffe Tower — (1901 ndash; 1917) also known as the Tesla Tower, was an early wireless telecommunications aerial tower designed by Nikola Tesla and intended for commercial trans Atlantic wireless telephony, broadcasting, and to demonstrate the transmission of… …   Wikipedia

  • Crystal radio — Crystal set redirects here. For the Australian rock band, see The Crystal Set. A modern reproduction of an antique crystal set. It is tuned to different stations by moving the sliding contact (right) up and down the tuning coil (red). The device… …   Wikipedia

  • List of Tesla patents — Below is a list of Tesla patents. Dr. Nikola Tesla was an inventor who obtained around 300 patents [Snezana Sarbo, [http://www.tesla symp06.org/papers/Tesla Symp06 Sarboh.pdfNikola Tesla s Patents] , Sixth International Symposium Nikola Tesla,… …   Wikipedia

  • Radio — is the transmission of signals, by modulation of electromagnetic waves with frequencies below those of visible light.Electromagnetic radiation travels by means of oscillating electromagnetic fields that pass through the air and the vacuum of… …   Wikipedia

  • Timeline of electromagnetism — The timeline of electromagnetism, that is the timeline of the human understanding of electromagnetic forces, dates back over two thousand years ago. It lists, within the history of electromagnetism, the associated theories, technology, and events …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»